

RemoveDebris mission, from concept to orbit

Prof. Guglielmo S. Aglietti Director of Surrey Space Centre, University of Surrey UK

azionaledi St

CDar

so-ousin anno vello a

Project funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 607099

University of Surrey

Introduction

Surrey Space Centre

University of Surrey

- Established in 1966 as an evolution of the Battersea Polytechnic Institute (1891)
- We are research-led institution pursuing advancing and disseminating knowledge
- ~3,000 members of staff and ~15,000 students
- One of the UK's top universities*

Surrey Space Centre

Formed in 1979 to pioneer research in microsatellites & low cost COFS technologies Largest UK academic centre in Space Engineering, based in the Faculty of Engineering and Physical Sciences Unique in UK Academia in-house end-to-end capability for Space Missions & Satellite Applications Strategic partnership with Surrey Satellite Technology Ltd (spun out from SSC in 1007) Structures & Mechanisms Prof. G Aglietti (SSC Director) Cutting Edge Applied Research and Academic Education A٩ Hands on Space Engineering D **Real Engineering Experience** Propulsion \checkmark Dr Andrea Lucca Fabris Instrumentation & Pa **Real Space Missions** Prof. Craig Underwoo **C** Avionics AI & Robotics Dr Chris Bridges Prof Yang Gao Microsatellites **Robotics & Control** Dr Mini Saaj Space Environment Keith Ryden Supported by **Mission Operations** 2 x Administration Staff & Ground Station 5 x Engineering Support Staff **Remote Sensing & Applications** 45 x PhD Students Dr Raffaella Guida 20 x Post-Doctoral Researchers

Secondo Congresso Nazionale di Space Renaissance Italia, Bologna, May 2018

University of Surrey

Space Debris & RemoveDEBRIS mission

The problem & a possible solution Video

Space Debris

60+ years of "human" activities in space have brought huge benefits for human kind, but we left behind a certain amount of.... junk (space debris..) Situation in 2017 (Ref. ESA): N of rocket launches since 1957: ~5250 N of satellites placed into Earth orbit: ~ 7500 N of these still in space: ~ 4300 (still functioning: ~ 1200) N of debris tracked by the US Space Surveillance Network : ~ 23 000 Total mass of all space objects in Earth orbit: ~7500 tons

- > The problem is growing !
 - New large constellations, OneWeb like (~900 satellites of 150kg)
 - Long duration of objects in orbit:
 - Hubble (600km -> 10 years), Spot (800km -> 200 years !)
- Fear events
 - Kessler syndrome -> snow ball effects with loss of all satellites
 - Parts of big debris (>1 tons) impacting ground

 Possible solution (Prof Liou, NASA): Remove 5/10 large debris/years to stabilize the number of debris (>10cm) in LEO

Secondo Congresso Nazionale di Space Renaissance Italia, Bologna, May 2018

The RemoveDEBRIS mission

> Ambitious

First Active Debris Removal demonstration missions of technologies used to

- ✓ observe (LiDAR camera),
- ✓ capture (net & harpoon) and
- ✓ destroy (dragsail) space debris

Complete implementation from concept design to in orbit demonstration!

> High profile project

Space mission significant for the whole space community & society

Significant media interest (form local BBC to CNN international)

Strategically important for the partners

> Challenging

Cost effective, to pave the way to industrial exploitation Manage risk ("lean" qualification) & launch via ISS

Started in Q4 2013 as €13 million value FP7 project receiving €7M from EC

Merge science & engineering developing the hardware and operating it in space

University of Surrey

SSC's contribution to the mission

Mission overview & SSC's hardware

Mission overview

Orbital parameter

- ISS orbit: altitude [400,430km] I=56.1°, LTAN (Local Time of the Ascending Node) not constant
- Demonstrations sensitive to:
 - □ Altitude (drag effects)
 - □ LTAN & date (lightning conditions)

In-orbit mission

- 4 main demonstrations:
- Each demonstration starts once previous one completed (data received on ground)
 - 1 week for each demonstration (preparation + demo)
 - ~2 weeks for data transfer

In-orbit duration > 6 months >

- □ Launch + ISS ~6 weeks
- □ LEOP + commissioning ~8 weeks
- On orbit demonstrations ~12 weeks
- Waiting phases up to ~7 weeks max for having correct lightning conditions (depends on launch date)

Key design drivers

Key design drivers

- Relative to RemoveDEBRIS demonstrations
 - Support payloads requirements
 - Demonstrations done autonomously (no need of Guildford ground segment visibility)
 - Lightning conditions with sun backward for supervision camera
 - □ Fail Safe (dual redundant architecture)

Relative to space law (to get license from UKSA):

- Avoid collision risks between platform & targets (fail safe trajectory)
- All parts must be detectable from ground (no debris < 10cm²) and re-enter in less than 25 years

Relative to ISS environment (to get authorization from Nasa)

- □ Key requirements relative to interface with ISS:
 - Mass < 100kg regarding KABER and SPDM systems
 - Volume compatible of the JEM airlock chamber
- □ Key requirements relative to ISS safety:
 - No battery charging done onboard ISS
 - 3 electrical inhibits + 1 mechanical barrier for deployable items (Net, Harpoon, Drag sail and Deployers)
 - Platform "OFF" for 30mn from deployment -> deviation wrt SSTL standards
 - Lower risk of recontact with ISS in case of unexpected payload deployment -> No software upload until risk of collision is quasi nil due to orbit decay

RemoveDEBRIS

The RemoveDEBRIS Project Partners 5

	Partner	Country	Business activity	Roles in the project
1	SSC	United Kingdom	University (Research)	Project management, Payloads: CubeSats, Dragsail, Harpoon structure
2	SSTL	United Kingdom	Space Prime for small satellites	Platform provider, Satellite operations
3	Airbus D&S	Germany		Payloads: Net
4	Airbus D&S	France	Space Prime for space transportation and satellites	Mission & System Engineering, Payloads: Vision-based navigation
5	Airbus D&S	United Kingdom		Payloads: Harpoon
6	ISIS	Netherlands	SME, specializing in nanosatellites	Payloads: CubeSat deployers
7	CSEM	Switzerland	Research Institution	Payloads: LiDAR camera
8	INRIA	France	Research Institution	Payloads: VBN algorithms
9	STE	South Africa	University (Research)	Payloads: CubeSat avionics

RemoveDEBRIS HTA

RemoveDEBRIS DS1

Secondo Congresso Nazionale di Space Renaissance Italia, Bologna, May 2018

RemoveDEBRIS DS2

• DSAT-2: Fully active – VBN Experiment

(OBC + Power + AOCS + ISL)

RemoveDEBRIS DragSail

Packaged Inflatable; Combined Inflatable and Deployable Boom Mechanism

RemoveDEBRIS from Guildford to Space

RemoveDEBRIS dissemination

Thank you

Prof. Guglielmo S. Aglietti Director of Surrey Space Centre, UK University of Surrey 2018

e/Tonou

Acknowledgments:

European Commission Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 607099 The members of the RemoveDebris consortium:

SSTL (UK)
 Airbus Defence and Space (Germany, U)

Airbus Safra

SEM (Switzer) Inria (France)

Mission analyses (1/2)

- Decay duration
 - STELA tool used, cross checked with Nasa
 - Specification: Orbit decay < 25 year
 - Sensitive to solar activity, altitude, BN (ballistic number)
 - Decay driven by Platform BN ~140kg/m2 (worst case compared to CubeSat, Net, Harpoon)
 - No issue with regard to decay duration
 - 2.5 years decay without drag sail, 8 weeks after drag sail deployment
 - More than 1.5 year margin when deployed from ISS at 400km
- Collision risks with ISS
 - Net collision with ISS feared by Nasa
 - Net ejected at 1.9m/s -> orbit increase ~6.7km (worst case)
 - Risk of collision until 16 weeks after ISS releasing
 - MtC analyses spread in all possible Net directions (sphere) & any time between ISS ejection and 16 weeks
 - 15% probability to come back at a distance <25km around ISS after an undetermined period of time
 - But: probability higher at beginning, and unexpected Net deployment quasi nil !
 - Accepted by Nasa if Net demonstration not performed before 8 weeks from ISS deployment

Minimum distance to ISS (km)

Mission analyses (2/2)

- Lighting conditions
 - Key parameter for supervision cameras for demonstrations success assessment
 - Sun Target Platform < 45°
 - Lighting parameters
 - Solar angle (α, β) variations function of orbit & time
 - LTAN not constant (orbit drift ~6° / day) on ISS orbit
 - Deployment directions = best compromise
 "Lightning" vs "Collision risk" vs "Back ground"
 - Net: AoA +100°, BA +90° -> opportunities for β >40°
 - VBN: AoA +110°, BA +100° -> opportunities for β =40° +/-5°
 - HTA: AoA -90° -> opportunities for $\beta = [20, 45^{\circ}]$
 - Opportunities with correct lighting conditions <u>not</u> all time !
- Power & Communication budgets
 - Power budget driven by β angle & eclipses
 - Communication budget (elevation > 5°)
 - Max access duration 7.11mn, 4 to 6 times
 - Average access time per day 27.55mn (0.45Gbyte/days)

